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Abstract. This study aims to determine the thermodynamic properties of a paraboson system 

of order two. The thermodynamic properties to be searched include the grand canonical 

partition function (GCPF), Z, and the average number of particles, N. These parastatistics 

systems is a more general form compared to a quantum statistical distribution that has been 

known previously, i.e. Bose-Einstein statistics (BE). Starting from the recursion relation of the 

GCPF for paraboson system of order two, recursion linkages for some simple thermodynamic 

functions for paraboson system of order two may be derived. The recursion linkages are then 

used to calculate the thermodynamic function of the model system of identical particles with 

limited energy levels which is similar to the harmonic oscillator. The results from Z show that 

the thermodynamics properties of the paraboson system of order two can be derived and have a 

similar shape with paraboson system of order one (boson). The similarity of the graph shows 
similar thermodynamic properties. 

1.  Introduction 

Given the principles of quantum mechanics, there is no necessity that the statistics of the particles 

must satisfy Bose-Einstein (BE) or Fermi-Dirac (FD) statistics. But both of the latter statistics have 

been proven through various experiments. Particles that satisfy Bose-Einstein statistics are called 

boson which has symmetrical wave functions under the exchange of any two particles. Examples 

include photons, alpha particles, and Helium atoms. On the other hand, fermions are particles that 

satisfy Fermi-Dirac statistics and Pauli's exclusion principle that is particles whose wave functions are 

anti-symmetric under the exchange of any two particles. Examples include protons, neutrons, and 

electrons. 

Many physicists attempt to formulate a more general statistics than the above existing statistics, 

either by creating new types of statistics or by generalizing Bose and Fermi statistics. Some type of 

statistics other than Bose and Fermi statistics are already introduced, such as null statistics, ortho-fermi 

statistics, Hubbard statistics, and others [1]. Moreover, statistics resulted from a generalization of 

existing statistics include intermediate statistics, parastatistics, infinite statistics, paronic statistics, 

anyon statistics, and others [2]. 

Parastatistics which is first introduced by Green [3], is the first consistent generalization of BE 

and FD quantum statistics called paraboson and parafermion, respectively. Parastatistics satisfies the 

tri-linear commutation relation for the operator's creation and annihilation of particles and meets the 

principles of cluster decomposition [4]. Because of this, although there is no indication that the 

http://creativecommons.org/licenses/by/3.0
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fundamental particles present today satisfy the parastatistics principles, this theory remains interesting 

for further investigation. Many physicists have attempted to obtain the corresponding physical 

quantities for the parastatistics system, in particular, the grand canonical partition function (GCPF). 

Obtaining the GCPF will reveal the thermodynamic properties of the parastatistics system, so it can 

serve as a basis for clarifying whether a physical system complies with these statistics or not. 

Parastatistics is the first consistent generalization of the Bose and Fermi quantum statistics. In 

its formulation, the standard bi-linier commutation (Bose) and anti-commutation (Fermi) relationships 

for the particle creation and annihilation operators are 

 

                                             [𝑎̂𝑖, 𝑎̂𝑗
†]

𝑞
≡ 𝑎̂𝑖𝑎̂𝑗

† − 𝑞𝑎̂𝑗
†𝑎̂𝑖 = 𝛿𝑖𝑗,                                                                    (1) 

 

with 𝑞 = +1 for Bose statistics and 𝑞 = −1 for Fermi statistics, which is substituted with the 

following tri-linear relation 

[𝑎̂𝑖
†𝑎̂𝑗 ± 𝑎̂𝑗𝑎̂𝑖

†, 𝑎̂𝑘
†] =

2

𝑝
𝛿𝑗𝑘𝑎̂𝑖

†,                                                              (2) 

 

with p is a positive integer which is the parastatistics order.  

Hartle et al. (1970) have shown that parastatistics is a quantum statistical theory that satisfies 

the cluster decomposition principle. This principle states that the measurement of the physical 

quantities of isolated particles does not depend on the presence of other particles elsewhere far 

enough. Although it fulfills the cluster decomposition principle, there is no indication yet those 

fundamental particles present today satisfy parastatistics principles. But this theory remains interesting 

to investigate further. In particular, many physicists have attempted to obtain related physical 

quantities for the parastatistics system, in particular, the GCPF [5-9]. 

Consider a system of particles that do not interact with each other, with the Hamiltonian given 

by 
                                                                       𝐻̂ = ∑ 𝐸𝛼

𝑚
𝛼 𝑁̂𝛼,                                                                     (3) 

 

with 𝐸𝛼  is the energy of a single quantum particle state |𝑖𝛼⟩, 𝑁̂𝛼 is the operator that counts the number 

of particles in state |𝑖𝛼⟩, and m is the number of different energy levels (may be degenerate states) 

denoted by 𝑖𝛼 = 1, ⋯ , 𝑚, where m may be infinite.  

The GCPF may be written as [10-12]: 

 

                                                    𝑍(𝑥1, ⋯ , 𝑥𝑚) = Tr𝑒𝛽(𝜇𝑁̂−𝐻̂),                                                  (4) 

 

where 𝑥𝑖 = 𝑒𝛽(𝜇−𝐸𝑖), 𝛽 = 1 𝑘𝑇⁄ , Tis the absolute temperature, 𝑘 = 1,38 × 10−23 J K⁄  is the 

Boltzmann constant, and 𝜇 is the chemical potential. The trace covers all states in the system under 

consideration. GCPF for identical particle system which is invariant to particle permutation has been 

formulated in [7,13,14], in the form of Schur polynomials sums: 

 
    𝑍(𝑥1, ⋯ , 𝑥𝑚) = ∑ 𝑠𝜆(𝑥1, ⋯ , 𝑥𝑚)𝜆∈⋀ ,                                            (5) 

 

where ⋀  depends upon the type of particle statistics under consideration. Schur’s polynomials, 

𝑠𝜆(𝑥1, ⋯ , 𝑥𝑚), is a symmetric polynomial which is defined as [15]: 

 

                                                           𝑠𝜆(𝑥1, ⋯ , 𝑥𝑚) = {

|𝑥𝑗

𝑚+𝜆𝑖−𝑖
|

Δ(𝑥1,⋯,𝑥𝑚)
; for 𝜆𝑚+1 = 0,

0          ;     else,

                             (6) 
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with Δ(𝑥1, ⋯ , 𝑥𝑚) ≡ ∏(𝑥𝑖 − 𝑥𝑗)is the Vandermonde polynomials. The form of Schur’spolynomials 

depend upon the 𝜆 parameter, which is a partition from an integer number n, that is 𝜆 = (𝜆1 ⋯ 𝜆𝑛) 

with 𝜆𝑖 ≥ 𝜆𝑖+1, and ∑ 𝜆𝑖𝑖 = 𝑛. Every 𝜆 is related to Young’s table which consists of boxes in left-

justified rows with 𝜆𝑖 box on the i-th row. For example, for 𝑛 = 11, and 𝜆 = (5,3,1,1,1), Young’s 

table is 

 

 

 

 

 

 

 

 

Figure 1.Young’s table for 𝜆 = (5,3,1,1,1). 

 

For paraboson of order p, ⋀ in Eq. (5) consists of sets of all 𝜆 having Young’s table of a 

maximum of p rows. For parafermi of order p, ⋀ consists of sets of all 𝜆 having Young’s table of a 

maximum of p column. 

 

 

 

 

 

 

 

(a)                          (b)   

 

 

 

Figure 2.Young’s table for 𝑝 = 4 of paraboson (a) and parafermion (b). 

 

 

GCPF for parafermion of orderpin Eq. (5), may be simplify into a determinant of two ratios, viz. 

[5,14]: 

 

𝑍(𝑝)
𝑝𝐹 (𝑥1, ⋯ , 𝑥𝑚) =

|𝑥𝑗
𝑚−𝑖−𝑥𝑗

𝑚+𝑝+𝑖−1
|

|𝑥𝑗
𝑚−𝑖−𝑥𝑗

𝑚+𝑖−1|
.                                                  (7) 

 

For paraboson of orderp, the GCPF may also be stated as a determinant of two ratios as [8]: 

 

                                                      𝑍(𝑝)
𝑝𝐵(𝑥1, ⋯ , 𝑥𝑚) =

|𝑃(𝑝)(𝑥1,⋯,𝑥𝑚)|

|𝑃(0)(𝑥1,⋯,𝑥𝑚)|
.                                                     (8) 

 

where |𝑃(𝑝)(𝑥1, ⋯ , 𝑥𝑚)| is the determinant of a matrix with the elements given by  

 

(𝑃(𝑝))
𝑖𝑗

= {

𝑥𝑗
𝑚−𝑖                           ; for 1 ≤ 𝑖 ≤ 𝑝,

𝑥𝑗
𝑚−𝑖 + (−1)(𝑝+1)𝑥𝑗

𝑚−𝑝+𝑖−1
; untuk(𝑝 + 1) ≤ 𝑖 ≤ 𝑚.

                    (9)  

 

p 

p 
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𝑍(𝑝)
𝑝𝐵(𝑥1, ⋯ , 𝑥𝑚) in Eq. (8) is obtained via solving a recursion relation which is derived using Schur’s 

polynomial symmetrization formula of [16]: 

 

𝑠𝜆(𝑥1, ⋯ , 𝑥𝑚) = ∑ 𝑠𝜆(𝑥1, ⋯ 𝑥𝑖 , ⋯ , 𝑥𝑚)𝑚
𝑖=1 ∏

𝑥𝑗

(𝑥𝑗−𝑥𝑖)

𝑚
𝑗=1
𝑗≠𝑖

.                             (10) 

 

Therefore, a recursion relation of parastatistic form is obtained as, 

 

𝑍(𝑝,𝑞)
ind (𝑥1, ⋯ , 𝑥𝑚) = ∑ 𝑍(𝑝,𝑞)

ind (𝑥1, ⋯ 𝑥𝑖 , ⋯ , 𝑥𝑚)𝑚
𝑖=1 ∏

𝑥𝑗

(𝑥𝑗−𝑥𝑖)

𝑚
𝑗=1
𝑗≠𝑖

+𝑥1 ⋯ 𝑥𝑚𝑍(𝑝,𝑞−1)
ind (𝑥1, ⋯ , 𝑥𝑚)

,                     (11) 

 

(with 𝑥𝑖 means 𝑥𝑖 is removed) for any 𝜆 partition with 𝜆𝑚 = 0. This equation is obtained from the 

expansion of minor determinant in Eq. (6). A simple case is exhibited when p = m, which previously 

may be simplified as [17] 

 

                                           𝒁(𝒑)
𝒑𝑩 (𝒙𝟏, ⋯ , 𝒙𝒎) =

𝟏

∏ (𝟏−𝒙𝒊)
𝒑
𝒊=𝟏

𝟏

∏ (𝟏−𝒙𝒊𝒙𝒋)
𝒑
𝒋=𝟏
𝒊<𝑗

.                                                (12) 

The above relation may be used as an initial input in the recursion relation of Eq. (11). 

An energy level model which is similar to the harmonic oscillator is chosen because this system 

has energy levels with equal distance, making it easier to calculate. In addition, many physical systems 

have similar energy levels to harmonic oscillators, i.e.: 𝐸𝑖 = (𝑖 + 1

2
)ℏ𝜔, 𝑖 = 0, 1, 2, ⋯ such as 

molecular vibrations, atoms in crystal lattices, and paramagnetic systems. The generalization to 

different energy levels can be easily made using the input values 𝐸𝑖, provided that the system is a non-

interacting particle system.The thermodynamic quantities can be obtained from the complete canonical 

partition function, Z, which is obtained through its complete canonical potential, 

 

                                           Ω(𝑇, 𝑉, 𝜇) = −𝑘𝑇𝑙𝑛𝑍(𝑇, 𝑉, 𝜇).                                                       (13) 

 

 

2.  Research Method 

This study is conducted in two stages, namely (i) computational method formulation and (ii) numerical 

casting in a computational programming language. In the first stage of computational method 

formulation, the study begins with the determination of boundary conditions. Then we analyze the 

thermodynamic properties of the parastatistics function. The next stage is numerical method casting 

into the computer program. Before the calculation, the numerical method is tested for its stability 

against the entered boundary conditions. This is important to be performed so that the result of 

computer calculation is not a set of data without physical meaning. Additionally, this procedure may 

also clarify the boundary conditions in the validity of the physical parameters that have been put into 

the numerics. The average number of particles can be derived as follows: 

 

                                                  𝑵(𝑻, 𝑽, 𝝁) = −
𝝏𝛀

𝝏𝝁
|

𝑻,𝑽
=

𝑻

𝒁

𝝏𝒁(𝒙𝟏,⋯,𝒙𝒎)

𝝏𝝁
|

𝑻
.                                           (14) 

The form of 𝝏𝒁 𝝏𝝁⁄  is obtained by differentiating the recursion relation of Eq. (11) against 𝝁 

at constant temperature T and 𝝏𝒁 𝝏𝝁⁄  as an initial value in the recursion relation of Eq. (14) obtained 

from Eq. (11), that is 

                            
𝝏𝒁(𝒙𝟏,𝒙𝟐)

𝝏𝝁
|

𝑻
= 𝜷𝒁(𝒙𝟏, 𝒙𝟐) [

𝒙𝟏

(𝟏−𝒙𝟏)
+

𝒙𝟐

(𝟏−𝒙𝟐)
+

𝟐𝒙𝟏𝒙𝟐

(𝟏−𝒙𝟏𝒙𝟐)
],                              (15) 



5

1234567890

International Conference on Science and Applied Science 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 909 (2017) 012019  doi :10.1088/1742-6596/909/1/012019

 

 

 

 

 

 

where 𝒁(𝒙𝟏, 𝒙𝟐) is given as in Eq. (12). 

3.  Results and Discussion 

From the computational calculations, we can obtain some graphs that can describe the properties of the 

thermodynamic functions of the second order paraboson model system. First of all, the area where the 

allowed values of 𝜇 are investigated. This is done by looking at the behavior of N which in general 

must be positive. Therefore, the N values arecalculated as a function of μ, which is given in the 

following graph. 

 

 
 

Figure 3. A complete canonical partition function, 𝑍(𝜇)for paraboson system. Inset: the same quantity 

for boson. 

 

In Fig. 3 it appears that the complete canonical partition function, Z, for the paraboson system has the 

same pattern and the value of μ must also be smaller than the lowest energy level of the single particle, 

𝜖 = 1

2
 , that is 𝜇 < 1

2
. Moreover, the value of Z may be investigated, which in general should not be 

negative as well. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The average number of particles, 𝑁(𝜇), for paraboson system. Inset: the same quantity for 

boson. 

 

Fig. 4 above shows that the value of μ is lower than the lowest 𝜖. This means that the second-

order paraboson system tends to absorb particles like the usual boson system, which tends to increase 

the number of particles into the system without losing energy (see e.g. Greiner et al. (1995)). From this 

property alone it can be expected that the second-order paraboson can experience condensation like a 

boson. 

From Fig. 3 for the average number of particles, N, for paraboson and parafermion systems, the 

values of  must be smaller than the lowest energy level of the single particle, = 1

2
, i.e. 𝜇 < 1

2
. For 

𝜇 ≥ 1

2
, the value of N can become infinitely negative (not shown in the graph). 
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Figure 5. The complete canonical partition function, 𝑍(𝑇), for paraboson system. Inset: the same 

quantity for boson. 

 

 

Fig. 5 above shows that the Z(T) pattern for paraboson and boson systems are similar. This 

means that in both of these systems the complete canonical partition function will increase along with 

the increase in temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The average number of particles, 𝑁(𝑇), for parabosn system. Inset: the same quantity for 

boson. 

 

Fig. 6 shows that as the temperature, T, increases, the value of N increases dramatically. This means 

that with an increase in T, the average total number of particles increases as well. The relation between 

N and T can be seen in Eq. (14), i.e.: 𝑁 ∝ 𝑇. 

 

 

4.  Conclusion 

The complete canonical partition function, Z, for a paraboson system has a pattern similar to boson 

system. This means that the second-order paraboson system tends to absorb particles like the usual 

boson system, which tends to increase the number of particles into the system without losing energy. 

From this property alone it can be expected that the second-order para boson may experience 

condensation like a boson.  
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